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The Maxwell-Chern-Simons system as a constrained system is quantized in the 
path integral formulation. Using the functional partition function and the method 
proposed by Fradkin, we obtain the correct absolute value squared of the 
ground state. 

Quantum field theories in (2 + 1)-dimensional space-time, especially 
Chern-Simons systems, have become the focus of widespread research activ- 
ity (Deser et  aI., 1982), not only for pedagogical and mathematical reasons, 
but also because of their possible role in (2 + l)-dimensional condensed- 
matter physics (Hall effect, high T~). These models are particularly interesting 
since they possess special topological structures which are only available in 
odd-dimensional space-time. The Maxwell-Chern-Simons system has been 
quantized canonically, and as an exactly solvable model, the ground-state 
functional has also been obtained (Deser et  al.,  1982). Recently, Fradkin 
(1993) proposed a marvelous method for the calculation of state functionals 
in the Schr6dinger representation. This method has been used to calculate 
ground-state functionals of a number of models, e.g., the Thirring-Luttinger 
model, coset models, and the Sutherland model (Fradkin and Moreno, 1993). 
In particular, it was shown that the wave functionals of the liquid ground 
states of fractional quantum Hall systems, in the thermodynamic limit, are 
universal at long distances and that they have a generalized Laughlin form 
(Lopez and Fradkin, 1992). All these systems are nonsingular. In this paper, 
we apply this path-integral method to the Maxwell-Chern-Simons system 
which is singular, and obtain the correct absolute value of the ground state. 
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The Lagrangian density of the model considered is (Deser et al., 1982) 

1 tx = - ~  F~F~v + -~ ~V~F~A,~ (1) 

F ~  = O~A~- O~A~ (2) 

We use the signature "q~v = diag(1, - t, - 1). The equations of motion 

O~F~ + 2 eW~F~ = 0 (3) 

are invariant against the gauge transformation 

A~ ~ A~ + OJ~(x) (4) 

while the Lagrangian changes by a total derivative 

--->~+ O ~ ( ~ F ~ f ~ )  (5) 

In order to quantize (canonically or via path integral) the system, 
it is necessary to analyze the classical canonical structure because quantization 
needs true physical contents. According to the definition, the canonical 
momentum conjugate to A~ is 

wi _ 02~ _ F i~ + lX ~iJAj (6) 
oA, -5 

7r ~ = 0 (7) 

The nonvanishing Poisson brackets are 

{Tri(x), aj(y)IxO=yO = - - ~ 2 ( X  -- y) (8) 

Thus we have a primary constraint 

+ l  = "rr~ ~ 0 (9)  

The canonical Hamiltonian is given by 

~c = 7riAi -- '~ 

1 IX ~iJ'lTiAj __ IX2 1 IX 
: ---~,Tri,'ITi-q- -5 -'8 AiAi + ~FiJFij -- ---~eiJFijAo --}- ,.rriOiAo(lO) 

The total Hamiltonian is thus 
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f 
Hr = J d2x (~c + o~qbl) (11) 

where e~(x) is the Lagrangian multiplier. From the consistency condition of 
the primary constraint 

{qbl, Hr} ~ 0 (12) 

we obtain the secondary constraint 

[.L E iJ f i  j +2 = O i "lTi "-[- -4 (13) 

It can be easily shown that 

{qb2, Hr} ~ 0  (14) 

Thus there exist no further constraints. Hencewe have two constraints which 
are first class 

(+l, +2} ~-0 (15) 

It is well known that, according to Dirac's conjecture, the first-class 
constraints generate gauge transformations; so, to eliminate the nondynamical 
freedom of a singular system which has n first-class constraints, n gauge- 
fixing conditions must be chosen. Hence here the true phase space is of 
dimension 2 • 3 - 2 • 2 = 2. We choose the familiar Coulomb gauge 

f2  -= Oi Ai  ~ 0 (16) 

The consistent condition f2 ~ 0 and the definition of n'r i in (6) imply that 
another gauge condition may be chosen to be 

f l  = Oi "ffi -[- V2A~ - ~ EiJOiAj ~ 0 (17) 

It can be shown that the determinant det{~ba, qbb} 4:0 and is independent of the 
field variables, hence we have the path-integral partition function according to 
the general scheme (Li, 1993; Gitman and Tyutin, 1990) 

f (  I x )  ~(OiAi) Z[J] = ~Tr ~ ~)A~ ~('rr~ 0iqT i "Jr- "-4 E.iJFij 
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•  ) (18) 

The delta function ~(ar ~ enables us to integrate rr ~ first, i.e., 

Z[J] = I~ ~3rri ~A~ 80i'rr i + -~ 
I,p. 

} (,9) 
Making use of a variable transformation which does not change the parti- 
tion function 

q.ri _.+ ,.ffi _ 2 eijAj (20) 

~I ~'rri ~A~ -+ const. 1-[ ~ r i  ~A~ (21) 
i ,p.  I,I.L 

we have 

Z[J] = f ~ ~ r  i ~Ar ~ ( O i ' r r i ) ~ ( O i A i ) ~ ( V 2 A ~  - ixeiiOiAj) 

• exp i d3x ~iAi - -~ ~ ~i~ri + - f  A'Ai 

, ]} 2~ FiJF~J + J~A~ (22) 

The delta function 8(V2A ~ - ixeiJOiAj) ensures that 

aiA ~ ~ - IxeiiAj (23) 

so A0 can be integrated. Notice that 

eiJAiAj .~ ~ Ai OiA~ ~-. 1 
2 ~ Oi(Ai A~ (24) 

i.e., the second term in the exponential is weakly a surface term, which can 
be neglected. Hence we have 
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• exp i d3x TriAi + ~ "rri'rri + ~ WAi 
,J  

FiJFu + jiAi _ jo 0 ~ euAj (25) 

Due to the delta functions, only the transverse parts of  the fields contribute 
to the integral. Consider the external source J~ = (0, J); we have 

Z[Jr] = [~ ~ -  ~Ari exp i d3x ~rAri + ~'rrrr~ 

Ix__22 1 1}  + 2 A)Ari - ~ FiJFij + J~-A~ (26) 

where J r  is the transverse part of J. This partition function is in agreement with 
the canonical Hamiltonian obtained in Deser et al. (1982). After integrating o ,  
we have finally 

Z[Jr] = f ~Arexp{i f d3x [~ A + l Ar'(V2 - p~2)Ar + Jr'Ar]) (27) 

We next evaluate the absolute value of the ground state by means of this Z[JT]. 
Quite recently, Fradkin (1993) obtained a relationship between the 

ground-state functional and the path-integral partition function. For a scalar 
field d~, the absolute value of the ground state ~gs[~b(x)] is 

I~I'gs[+(x)]12= f ~J(x) exp{-i f dx J(x)6(x)}Z[J],o (28) 

where Z[J]to comes from the restriction of the source J(x) which appears in 
the path integral to the form J(x) = J(x)~(t - to). In the present case 

Iq~gs[Ar]12= f ~Jr(x) exp{-i f dZxJr(x)'Ar(x)}Z[Jrlto (29) 

The partition function can be evaluated from (27), i.e., 

) 
where the Green function is given by 
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~ij f e -ik(x-y) d3 k (31) 
Gij(x, y) - (2,rr) 3 k~ - (k 2 + I~ 2) + i'q 

where -q > 0, so 

= lim Gij(x , y) - ~ij f e ik(x-y) Gij(x, Y) d~y0 (2xr)2 ( - i )  ~ dak (32) 

where to(k) = (k 2 + 1~2) 1/2. Hence 

Z[J]to = J exp - ~  dZx d2y ji(x)G~j(x, y)JJ(y) (33) 

where 

~O f eik(x-Y) 
Gej(x, y) -- iGiy(X, y) - (2702 ~ d2k (34) 

Thus, from (27), (29), and (33), we have the absolute value squared of the 
ground-state functional 

I*gs[Ar] 12 

=dCexp{-fd2xd2yAT(x).Ar(y)fto(k)e'l'(x-y)d2k} 

exp[-f Ar.( -V~ + I,I,2)I/2AT] (35) 

which is correct (Deser et al., 1982). 
We make final some remarks. It can be seen from the partition function 

(27) that the model (1) is in fact a massive gauge theory. On the other hand, 
since the transverse part AT has only one freedom, the property of the system 
must be analogous to that of a scalar field with mass/~. Their relationship 
was also given explicitly in Deser et al. (1982). It can be understood from 
this paper that Fradkin's approach to the evaluation of wave functionals can 
also be applied to singular systems without special difficulty. 
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